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Modular pyridine-type P,N-ligands derived from monoterpenes:
application in asymmetric Heck addition
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Abstract—Novel (diphenylphosphinophenyl)pyridine ligands (+)-8, (+)-15, (−)-21, and (−)-26 were synthesized from (−)-b-pinene,
(+)-3-carene, (+)-2-carene, and (−)-a-pinene, respectively, via Kröhnke annulation as the key step, and shown to effect 588% ee
in Heck addition (27�28). Ligands (+)-15 and (−)-21 are quasi-enantiomeric; ligands 8 and 26 can be prepared in both
enantiomeric forms from (+)- and (−)-enantiomers of a- and b-pinene, respectively. © 2001 Elsevier Science Ltd. All rights
reserved.

Transition metal complexes with heterobidentate lig-
ands, such as (phosphinoaryl)oxazolines,1 MOP,2

QINAP,3 and MAP,4 are valuable catalysts for a num-
ber of asymmetric reactions, particularly in those areas
where the traditional C2-symmetrical ligands fail.1–5

Herein, we report on the synthesis of novel (phosphi-
noaryl)pyridine P,N-ligands, where the chirality is
introduced by annulation to a monoterpene segment.6

This approach is based on our experience in the synthe-
sis of the C2-symmetrical bipyridine ligand PINDY, in

which the pyridine units were annulated to the chiral
blocks originating from (−)-b-pinene.7,8

In the synthesis of the first (phosphinoaryl)pyridine
(+)-8 (Scheme 1), (+)-nopinone (+)-2, obtained from
(−)-b-pinene (−)-19a by oxidative cleavage (cat. OsO4,
Me3NO, Py, NaIO4, t-BuOH–H2O, rt, 30 min, then
reflux for 2 h; 66%),7,10 was condensed with ethyl
formate (HCO2Et, MeONa, toluene, rt, 10 h) to gener-
ate 3 (75%). Subsequent transaldolization (37% CH2O

Scheme 1.
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Figure 1.

ether) produced the cis-derivative (+)-11 (98%).16

Claisen condensation of (+)-11 (HCO2Et, MeONa,
toluene, rt, 10 h; 76%), followed by transaldolization
(37% CH2O in H2O, Na2CO3, ether, rt, 2 h; 90%) gave
(+)-13, whose treatment with Kröhnke salt (5,
AcONH4, AcOH, 90°C, 3 h) furnished (+)-14 (60%), in
which the fluorine was replaced by phosphorus (Ph2PH,
t-BuOK, 18-crown-6, THF, rt, 48 h) to afford ligand
(+)-15 (83%).

In a related procedure (Scheme 3), (+)-2-carene (+)-169c

was epoxidized (MCPBA, ether, rt, 12 h; 85%), and the
resulting 1717 was isomerized (LDA, 3 equiv, THF, 0°C
to rt, 6 h) to give 18 (53%),18,19 whose oxidation
[PhI(OAc)2, TEMPO, CH2Cl2, rt, 5 h]20 afforded 19
(83%). Kröhnke annulation (5, AcONH4, AcOH, 90°C,
3 h) produced (−)-20 (60%), which was then converted
into (−)-21 (Ph2PH, t-BuOK, 18-crown-6, THF, rt, 48
h; 74%).

Finally, yet another ligand architecture can be envis-
aged for an analogue where the terpene bridge is shifted
by one carbon, leaving the ‘benzylic’ position amenable
to alkylation.8 This ligand type, namely (−)-26 (Scheme
4), was synthesized from (+)-pinocarvone (+)-22,21

obtained either by allylic oxidation of (−)-b-pinene
(−)-1 (SeO2, CCl4, reflux, 24 h, 27%),22 or via the
ene-reaction of (−)-a-pinene (−)-23 with singlet oxygen
(hn, O2, TPP, pyridine, DMAP, Ac2O, CH2Cl2, rt, 2

in H2O, Na2CO3, ether, rt, 2 h) afforded 4 (90%),11

whose condensation with Kröhnke reagent (5,
AcONH4, AcOH, 90°C, 3 h), obtained from 6 on
iodination in pyridine (I2, pyridine, 100°C, 2 h; 47%),12

produced (+)-7 (47%).12 Treatment of (+)-7 with Ph2PK
(Ph2PH, t-BuOK, 18-crown-6, THF, rt, 48 h)13

afforded the desired phosphine (+)-8 (49%).

In a metal complex of (+)-8, the upper-left front octant
will be severely hindered by the CMe2 group (A in Fig.
1) but the lower-left octant will also be partly shielded
by the CH2 group of the cyclobutane ring. The latter
drawback would be eliminated in the cyclopropane
ligand B, where the CH2 group is absent, leaving the
lower-left octant free.14

As a building block for the cyclopropane moiety, we
chose (+)-3-carene (+)-99b (Scheme 2). Allylic oxidation
[O2, CrO3 (1 mol%), pyridine (5 mol%), rt, 24 h]15 gave
(−)-10 (20%), whose hydrogenation (H2, 5% Pd/C,

Scheme 2.

Scheme 3.
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Scheme 4. TPP=tetraphenylporphine.

following acronyms: PINPHOS for (+)-8, (+)- and (−)-
CANPHOS for (+)-15 and (−)-21, respectively, and
iso-PINPHOS for (−)-26.
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